Regulatory T cells and immune tolerance

nobel prize to corneal immune privilege

Authors

  • Martín Berra Hospital Oftalmológico Pedro Lagleyze, Ciudad de Buenos Aires, Argentina.

DOI:

https://doi.org/10.70313/2718.7446.v18.n4.473

Keywords:

nobel, ophthalmology, cornea, eyes, immune system

Abstract

The 2025 Nobel Prize in Physiology or Medicine, awarded to Shimon Sakaguchi, Mary Brunkow, and Fred Ramsdell, recognizes fundamental discoveries in peripheral immune tolerance and the central role of regulatory T cells (Tregs). Although originally framed within systemic immunology, these findings hold particular relevance for ophthalmology, where immune balance is essential to preserving vision. The cornea represents a unique model of immune privilege, sustained by anatomical barriers, local immunomodulatory factors, and the action of tissue-resident Tregs that limit inflammation. In corneal transplantation, the presence or dysfunction of these cells directly influences graft acceptance or rejection, suggesting future therapeutic avenues based on FOXP3 modulation or targeted Treg expansion to promote localized tolerance without systemic immunosuppression.

Moreover, the knowledge derived from these Nobel laureates reframes the understanding of multiple ocular disorders —from autoimmune diseases of the ocular surface to allergic conjunctivitis, conjunctival tumors, and uveitic processes— through the lens of finely tuned immune regulation. Collectively, the advances recognized by the Nobel Prize highlight the eye, and particularly the cornea, as a living microenvironment where peripheral tolerance is expressed in its most refined form, offering new conceptual and therapeutic perspectives for ophthalmic practice.

Downloads

Download data is not yet available.

References

1. Liston A. An education in tolerance: the 2025 Nobel Prize in Physiology or Medicine. Dis Model Mech 2025; 18(11): dmm052725. doi: 10.1242/dmm.052725.

2. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25): breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155(3): 1151-1164.

3. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, Wilkinson JE, Galas D, Ziegler SF, Ramsdell F. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001; 27(1): 68-73. doi: 10.1038/83784.

4. Ramsdell F, Rudensky AY. Foxp3: a genetic foundation for regulatory T cell differentiation and function. Nat Immunol 2020; 21(7): 708-709. doi: 10.1038/s41590-020-0694-5.

5. Kawakami R, Sakaguchi S. Treg cells augment self-tolerance during infection. Nat Immunol 2025; 26(5): 650-652. doi: 10.1038/s41590-025-02141-7.

6. Wing JB, Tanaka A, Sakaguchi S. Human FOXP3+ regulatory T cell heterogeneity and function in autoimmunity and cancer. Immunity 2019; 50(2): 302-316. doi: 10.1016/j.immuni.2019.01.020.

7. Schönberg A, Hamdorf M, Bock F. Immunomodulatory strategies targeting dendritic cells to improve corneal graft survival. J Clin Med 2020; 9(5): 1280. doi: 10.3390/jcm9051280.

8. Tahvildari M, Me R, Setia M, Gao N, Suvas P, McClellan SA, Suvas S. Foxp3+ regulatory T cells reside within the corneal epithelium and co-localize with limbal stem cells. Exp Eye Res 2024; 249: 110123. doi: 10.1016/j.exer.2024.110123.

9. Guo H, Zhang Y, Liao Z, Zhan W, Wang Y, Peng Y, Yang M, Ma X, Yin G, Ye L. MiR-146a upregulates FOXP3 and suppresses inflammation by targeting HIPK3/STAT3 in allergic conjunctivitis. Ann Transl Med 2022; 10(6): 344. doi: 10.21037/atm-22-982.

10. Sakai A, Tagami M, Misawa N, Haruna Y, Tomita M, Honda S. Serum PD-1 regulation and PD-1 expression of CD4+Foxp3+ regulatory T cells in patients in thyroid eye disease associated with immunosuppression treatment. Front Ophthalmol (Lausanne) 2024; 4: 1491053. doi: 10.3389/fopht.2024.1491053.

11. Huang L, Cheng P, Niu Z, Zang L, Chen Z, Yang C, Ma W, Nie W. Correlation of serum Helios, CD226, TIGIT, and Foxp3 with tear film osmotic pressure and dry eye disease in patients with rheumatoid arthritis. Expert Rev Clin Immunol 2025; 21(6): 815-823. doi: 10.1080/1744666X.2025.2512451.

12. Tagami M, Kakehashi A, Katsuyama-Yoshikawa A, Misawa N, Sakai A, Wanibuchi H, Azumi A, Honda S. FOXP3 and CXCR4-positive regulatory T cells in the tumor stroma as indicators of tumor immunity in the conjunctival squamous cell carcinoma microenvironment. PLoS One 2022; 17(3): e0263895. doi: 10.1371/journal.pone.0263895.

13. Peng Z, Nagarajan V, Horai R, Jittayasothorn Y, Mattapallil MJ, Caspi RR. Ocular immune privilege in action: the living eye imposes unique regulatory and anergic gene signatures on uveitogenic T cells. Cell Rep 2025; 44(6): 115780. doi: 10.1016/j.celrep.2025.115780.

14. Kuryltsiv N. Neopterin levels and immune response in autoimmune uveitis in an experiment. Korean J Ophthalmol 2025; 39(3): 258-268. doi: 10.3341/kjo.2024.0118.

Downloads

Published

2025-12-22

Issue

Section

Scientific Opinions

How to Cite

1.
Berra M. Regulatory T cells and immune tolerance: nobel prize to corneal immune privilege. Oftalmol. Clín. Exp. 2025;18(4):e412-e415. doi:10.70313/2718.7446.v18.n4.473

Similar Articles

1-10 of 334

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)